Tea: Cover's Guessing Game

Wessel Bruinsma
 University of Cambridge, CBL

28 January 2021

THEM: Choose left or right.
YOU: Left?
THEM: Reveals $x=\pi$.
THEM: Is $y>x$ or not?

Can you win with probability strictly greater than $\frac{1}{2}$?

Yes, You Can Win With Probability $>\frac{1}{2}!$

- Choose a function $p: \mathbb{R} \rightarrow[0,1]$ that is strictly increasing.
- Strategy:
(1) Choose to see $z \in\{x, y\}$ with equal probability.
(2) Guess other is lower with probability $p(z)$.
- Proof:
- Let $H=\max (x, y)$ and $L=\min (x, y)$.
- Win probability equal to

$$
\frac{1}{2} p(H)+\frac{1}{2}(1-p(L))=\frac{1}{2}+\frac{1}{2}(p(H)-p(L))>\frac{1}{2} .
$$

you happen to see H

- What is this madness?!?!
- Strategy:
(1) Draw $r \sim \mathcal{N}(0,1)$.
(2) Choose to see $z \in\{x, y\}$ with equal probability.
(3) Guess other is lower if $z>r$.

- Popularised by half-page abstract of Thomas Cover (1987).
- Paradox can be traced back to works of David Blackwell and Bruce Hills (1951!).
- Many related puzzles! See Gnedin (2016).

Bananan: I myself have invented a game. Well, think of a number. Alika: I got a number.
Bananan: Me too. Now, tell me yours.
Alika: Seven.
Bananan: Seven. Mine is eight-I won.
Sergey Solovyov, Assa
(Quote taken from Gnedin (2016).)
These slides: https://wesselb.github.io/pdf/cover.

Appendix

References

Cover, T. M. (1987). Pick the largest number (T. M. Cover \&
B. Gopinath, Eds.; 1st ed.). Open Problems in Communication and Computation, 152-152.

Gnedin, A. (2016). Guess the larger number. arXiv preprint arXiv:1608.01899.

